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HEXURONIC ACID AND AMINOSUGAR NUCLEOSIDES VIA STANNIC CHLORIDE -
1
CATALYZED GLYCOSIDATIONS OF SILYLPYRIMIDINES WITH PERACYL-SUGARS )
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Institut fir Organische Chemie, Technische Hochschule Darmstadt,

61 Darmstadt, Germany

On the basis of ten SnC14-cata1yzed N-glycosidations of silylated uracil (1) and
N-acetylcytosine (2) with per-O-acyl-glycoses from uronic acids, aminosugars
and simple hexoses, the scope of the procedure is evaluated, a major concern

being the formation of N-3 nucleosides from 1.

Of the various newer procedures for the synthesis of pyrimidine nucleosides 2)'r.he most
recently advanced 3)Friedel-Crafts catalyzed N-glycosidation of silylated pyrimidines with per-
O-acyl-glycoses has commanded particular interest 4-13), featuring the utilization of readily
accessible silyl nucleobases and of fully acetylated sugars as distinct advantages. Hence, not
only standard pyrimidines have been glycosidated in this way with a variety of pentose and hexose

derivatives 4—8), but also aza- 6, 9,) thio- 3,10)

and fused pyrimidine heterocycles 13). We here report the first applications of this procedure to

1 12
, and seleno-analogs 1)as well as pyrazine )

the synthesis of pyrimidine nucleosides from hexuronic acids and aminosugars, together with
some of the limitations of the method.

In glycosidations of 2, 4-bis(trimethylsilyl)uracil (1) via this procedure, the formation of
N-1- and N-3-substituted (-glycosyl-uracils appears to be of much more serious concern than
that of ¢-nucleosides. Thus, reaction of methyl tetraacetyl-f-D-glucuronate 3 with 1ina 1:1.2:
2.3 ratio of sugar, base and stannic chloride (5 h, 700C) gave two major products in approxi-
mately equal amounts, readily separated by PLC and characterized in crystalline form, yet in
low yield (cf. Table). One product proved to be the expected 1-(methyl tri-O-acetyl-B-D-glucu-
ronyl)uracil 9 on the basis of spectral data and its ready conversions into the unblocked 1-(glucu-
ronyl 11 by 0.1 N sodium hydroxide (3 h, 250) or into the corresponding glucuronamido derivative
12 by methanolic ammonia 14) The second component turned out to be the N-3-glycosylated
uracil nucleoside 4 rather than an ¢-anomer of 5, as evidenced by a shift of l from 265 nm
(water) to 294 nm —(0. 1 NaOH) 16) and a quartet t?or H-6 at 7 2. 68, attributablen‘?oa}::oupling with
the vicinal H-5 (8 Hz) and Nl-H protons (4 Hz).

An increase in the amount of nucleobase used in the glycosylation appears to raise the
proportion of N-1-substituted uracil nucleosides, as evidenced by the isolation of galacturonyl-

uracil 9 from 6 in 58 % yield (cf. Table), yet two minor components were detectable (tlc). Even
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more propitious proceeded the uracilations of the benzoyl derivatives 7, 8 and 14, affording only
_traces of UV-active materiai other than 10 and 13, resp., and allowing their isolation in yields
over 70 % (cf. Table).

As expected from the ready formation of the oxazoline 21 from tetraacetyl-2-acetamido-2-
deoxy-B-D-glucose (20) with ferric chloride in dichloromethane at room temperature 17), the
conversion 20 —21 is also effected by stannic chloride (or titanium tetrachloride) in dichloro-
ethane. Hence, when subjecting either 20 or 21 to SnC14-cata1yzed uracilation with 1, the actual
glycosidations are occuring at the intermediate stage of an SnCl4-ox_azoline complex, and the
product distributions are identical. Under standard conditions, i.e. 7 h at 700 withal:1,3:1.4
ratio of g(__)/g;, silylbase l and catalyst, the mixture obtained consisted of N-1 nucleoside %% with
approximately 10 % each of the corresponding N-3-isomer Z‘é [amorph, [af]lzj3 - 67° (c 0.5, me-
thanol)], oxazoline 21 and tri-O-acetyl-2-acetamido-2-deoxy-D-glucopyranose, the latter being
formed from 21 during aqueous workup. Better results were obtained on raising the amount of
silyl-uracil to two, and decreasing the catalyst to 0. 5 molar equivalents; the ensuing reaction
mixture contained only traces of 21 and the N-3-nucleoside and allowed the isolation of 22 in
59 % yield (cf. Table).

With respect to the site of N-glycosidation, reactions of N4, -Q-bis(trimethylsilyl)-N4-
acetylcytosine (g) with per-O-acyl sugars appear to take a much more uniform course. Accor-

dingly, the two blocked hexopyranoses 14 and 15 afforded,in yields of over 80 %, the N-1-nucleo-
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TABLE: Nucleosides prepared by stannic chloride catalyzed glycosidations of 2, 4-bis(trimethylsilyl)derivatives of
uracil (1) and N-acetylcytosine (2) with 1-O- acyl-glycoses.

Educts Molar ratio Conditions
f o
Product® | Silyl- Sugar o Yield P (e (solvent, C)
Pyrimidine Componentb Sugar : Base : SnCl, “(':)e :gg)p - % (? C) b
4 1 8 1 1.2 2.3 5 70 10 179-180 +6 (CH,OH, 20)
5 15 209-210 -1 (CHSOH, 20)
9 1 [ 1 1.6 2.3 5 70 58 amorph +37 (CH,OH, 20)
10 1 Tor8 1 1.6 2.3 5 70 75 220-223 + 160 (CHCla. 20)
13 1 14 1 1.3 2.6 12 60 7 204-206
22 1 20 or 21 1 2.0 0.5 5 70 50 glass - 32 (CHCl, 19)
16 2 14 1 1.1 2.6 12 60 85 266-268(dec) + 99 (DMF, 23)0
17 2 15 1 1.1 2.6 12 60 81 240-241(dec) + 24 (DMF, 24)
19 2 18 1 1.5 2.6 16 25 69 255 +23 (Mezco, 20)
23 2 20 or 21 1 2.0 0.5 5 70 71 218-220 - 10 (CHCl,, 25)¢
a) All new P is gave el y analysis results within 0. 3 % of theory, as well as UV (methanol) and NMR

data (DMSO-ds) that were consistent with the structures assigned.

b) The newly prepared acyl sugars were obtained as follows: 8, mp 225 - 226° and [a]lz)o +271° (c0.5, CHCls).
from its methyl glycoside or from 7 [S. Morell and K. P. Link, J. Biol. Chem., 108, 766 (1935)] by acetolysis
(58 %); 14, mp 143 - l44° and [a];o +92° (c1, CHCIS), from its methyl glycoside [E.J. Reist et al., J. Org.
Chem., 30, 2312 (1965)] by acetolysis (79 %); 15, mp 175 - 178° and [a]5 + 126° (c 1, CHCI,), from its methyl
glycoside [F. W. Lichtenthaler and P. Heidel, Angew. Chem:, 81, 998 (1969)] by BFs-cauIyzed acetolysis (47 %);

18, mp 164° and [a} +43° (¢ 1, CHCLy), from 1,2-Q-isopropylidene.3-trifluor ido-3-deoxy-a-D-ribo-
furanose [A. M. Fujiwara et al., J. Heterocycl. Chem., 7, 891 (1970)} by b lati d talization by acid

and benzoylation (48 % for 3 steps).
c) In conformity with data reported previously [K.A Watanabe et al., J. Org. Chem., 35, 231 (;970)],
d) Data correlate well with those of C. L. Stevens and K. Nagarajan, J. Med. Chem., 5, 1124 (1962).

sides lé and 17,, key intermediates for efficient syntheses of 4’-aminohexosyl-cytosines of gluco-

and galacto-configuration 18) Similarly, the 3-aminoribose derivative 18 and glucosamine pen-

taacetate 20 could be converted into their N-acetylcytosine nucleosides 19 and 23, resp., in satis-
factory yields (cf. Table); some minor products detectable by tlc in the reaction mixtures (con-
ceivably o-anomers and/or N-3-isomers) were readily removed by the usual isolation procedure.

The results presented here are of purely preparative nature and, hence, unsuitable for far-
reaching mechanistic conclusions. Yet, the highly stereoselective formation of 8-glycosidic
linkages clearly indicates that the stereochemistry is controlled by the vicinal 2-acyloxy group
via trans-opening of cyclic acyloxonium intermediates, a course that is substantiated by the ready
formation of oxazoline %L from %Q under these conditions. Furthermore, on the basis of the
accumulated evidence, some rationalizations may be made that are of considerable relevance to
the preparative utility of this stannic chloride catalyzed N-glycosidation procedure:

1. Whilst bis-trimethylsilyl-N4-acetylcytosine 2 is readily N-1-glycosidated with 1-O-acyl-gly-
coses by SnCl4 in dichloroethane, N-1 and N-3-glycosidation can occur with bis-trimethylsilyl-
uracil (1), impairing yields considerably.

2. The use of benzoyl instead of acetyl groups for O-protection in the sugar educt not only favors
the isolation of crystalline products at the blocked nucleoside stage — of advantage for removal

of side products formed — but also appears to disfavor N-3-glycosidation of bis-(trimethyl)ura-

cil.
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3. Though somewhat less reactive, 1-O-benzoylglycoses may be utilized for this procedure just

like their 1-O-acetyl analogs.
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